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Nonequilibrium lattice models are characterized by the dependence of their stationary properties on
the details of their underlying microscopic dynamic. Any mesoscopic description of these systems, such
as a Fokker-Planck equation (FPE), should reflect this microscopic dependence. In this paper we con-
struct a FPE from a given master equation whose dynamics is a superposition of rates, each one alone
driving the system to a different equilibrium state. The FPE obtained exactly reproduces (i) locally the
exact stationary nonequilibrium distribution around its extremals and (ii) globally the equilibrium sta-
tionary distribution when only one of the rates is acting. In any case the FPE depends on the analytical

form of the microscopic rates.

PACS number(s): 02.50.Ey, 05.20.—y, 05.40.+j

I. INTRODUCTION

The behavior of the brain, pattern formation in liquids,
and the prediction of earthquakes form part of a set of
problems associated with so-called complex systems. A
complex system is usually a system with an infinite num-
ber of degrees of freedom with a well defined microscopic
dynamics, but from which we are unable a priori to pre-
dict or to describe the system’s macroscopic behavior.
The study of these systems is a growing field in which
several scientific disciplines converge in an attempt to ex-
tract some general law about the behavior of these sys-
tems and/or to find some systematic method to charac-
terize and classify them.

There are two main approaches in the theoretical study
of complex systems. They are based on a microscopic
master equation and on a mesoscopic type of equation
modelings, respectively.

A. Microscopic master equation modeling

The system is modeled by using a set of continuous or
discrete variables defined over the real space. These vari-
ables follow a local Markovian dynamics approximating
the underlying real microscopic one of the complex sys-
tem in question. The system is theoretically described by
a microscopic master equation which is equivalent to an
infinite set of time differential equations governing the
behavior of all possible system correlations. These equa-
tions are usually strongly coupled to each other and it is
far from trivial to solve them. Therefore, it is common to
use, for example, mean field types of approximations, per-
turbation schemes, and/or Monte Carlo computer simu-
lations in order to get some picture of how the system
behaves. Due to the absence of a well developed theory
(similar to Gibbs ensembles for equilibrium problems) to
deal with this class of systems and the lack of defined lim-
its of validity of the schemes used, the results obtained
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are usually controversial (see, for example, Refs. [1,2])
and/or qualitatively inconsistent when using different ap-
proaches (see, for example, Refs. [3-5]). Because of the
unreliable nature of the analytical approximations, it is
usually necessary to perform a Monte Carlo computer ex-
periment to see directly the real behavior of the model.
The main advantage in working at this level is that it is
possible to control the microscopic dynamic details and
study their influence on the macroscopic behavior. We
should mention that some relevant exact results have
been obtained for this class of models, for example, the
dynamical properties for the one-dimensional Ising model
with a specific dynamics [6], the stationary properties of
nonequilibrium systems with a mean field type of dynam-
ics (see, for instance, Ref. [3]), the rigorous construction
of a continuous reaction-diffusion equation from a partic-
ular microscopic stochastic model [7], and the existence
of effective Hamiltonians which describe the stationary
states of some nonequilibrium models [8].

B. Mesoscopic descriptions

The system’s dynamical behavior is described through
a finite set of mesoscopic differential equations whose
structure captures some specific system symmetries, con-
servation: laws, and/or any other macroscopic properties.
Some well-known relevant examples include the
Boltzmann equation, the Fokker-Planck equation, and
the Navier-Stokes equation (see, for example, [9]). The
connection between these equations and the microscopic
system that they attempt to describe is, in most of the
cases, intuitive and nonrigorous, but it appears to be use-
ful in order to know the corresponding limits of applica-
tion. Within these limits, it is remarkable how good the
macroscopic descriptions that we obtain from them are.
All these equations have something in common: they de-
scribe a dynamical averaged system behavior which is the
result of space and time rescaling. Even though the
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aforementioned equations are far from trivial, at least
there exist systematic theoretical tools to extract some
valid information from them (see, for instance, Refs.
[9-11]). There is, however, a problem in applying this
kind of equation to the study of complex systems: any
direct dependence on the microscopic dynamical details
is lost or not accurately contemplated. Therefore, for
each phenomena observed, it is necessary to build, a pos-
teriori, the corresponding mesoscopic equation which de-
scribes it.

We see from the above two points of view that efforts
to connect the master equation type of descriptions with
mesoscopic equations are interesting by themselves when
dealing with complex systems. In this paper we explain a
systematic way to connect both descriptions above for a
particular family of nonequilibrium competing dynamic
models [12], that is, models whose microscopic dynamic
is the superposition of several ones which, acting alone,
drive the system to different equilibrium states. From a
microscopic Markovian master equation, which defines
the model, we would like to construct a mesoscopic
Fokker-Planck equation (FPE) with four minimum
desired properties.

(i) The FPE’s should depend explicitly on the micro-
scopic rates (as it is observed in Monte Carlo computer
experiments of closely related nonequilibrium lattice
models [13]).

(ii) The dynamics associated with the deterministic
part of the equation should be described exactly.

(iii) Its stationary distribution should be the corre-
sponding equilibrium Gibbsian one (independent on the
microscopic rate used), when a unique microscopic mech-
anism acts.

(iv) In general, its stationary nonequilibrium distribu-
tion should be at least locally exact around the extremals
of the true one.

None of the FPE’s commonly used in the literature (say,
for instance, Hohenberg and Halperin’s model A [14] or
the Kramers-Moyal FPE’s [10]), fulfills at the same time
these four requirements.

In order to get the desired FPE we follow a two-step
strategy by answering affirmatively the following two
questions: (1) Is it possible, on physical grounds, to get a
rate-dependent mesoscopic description from a Markovian
master equation? (2) Is it possible to find a second-order
partial differential equation with the properties (iii) and
(iv). The first answer is affirmative because, as we will
see, there exists a natural parameter on these models {Q,
which characterizes the coarse graining from a micro-
scopic lattice model to the continuous equivalent one.
This parameter is used to expand the master equation.
From this expansion we get a set of equations whose solu-
tion should give us the exact nonequilibrium distribution
order by order in Q. In particular, from it we obtain a
rate-dependent deterministic equation when — .

The answer to the second question is partially
affirmative. That is, we manage to adjust our FPE in
such a form that it describes the first two leading orders
in the ) parameter expansion of the exact nonequilibri-
um stationary distribution.
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II. MODEL

Let us define first an equilibrium model which will be
the basis of our nonequilibrium competing dynamic mod-
els. On a d-dimensional cubic lattice we allocate at each
site x €Z¢ a spin variable, say s(x)=x11. The system in-
teraction Hamiltonian is given by H(s;K), where
s={s(x)|x€Z% and K={K;}"_, is the set of parame-
ters defining the interaction. Because the spin variables
are discrete and our goal is to construct a continuous
type of equation, we define a new set of variables

Pox)=L I s(p), x€Z¢, @.1)
@ yenn ~

where A?CZ" is a volume centered at x containing () lat-
tice sites. Note that the ®, variables may take the values
—1+21/Q, with [=0,1,...,Q. We assume that the
equivalent interaction Hamiltonian H® is such that it can
be written in these new variables as

HY®y:K)= 3 h™UDy(x)K),

gez‘

(2.2)

where ®(x) is some generic finite local set of ® vari-
ables around x and = {Pg(x),x EZ"]. An example of
a one-dimensional Hamiltonian is H®®g;{u,A})
=3, ({Q[Pg(x) — Pg(x —1)]}2 + p2®4(x) + A (x)).
Let us remark here that we are not interested in how to
build explicitly the Hamiltonian (2.2) from the original
lattice one H,. It could be an interesting subject by itself,
but it is not a relevant point for the goals of this paper.
We choose the radius of any region Ag of the order of the
spin system correlation length. In this case we can
guarantee that ®g(x) is a smooth function of x, i.e., we
can write ®o(x)=®(Q /%), where ®(r) is assumed to
be an analytic function in r. If a is the lattice spacing,
we define a rescaled one @ =Q!/%a,,. The continuum lim-
it is then defined by taking |a,| —0 and Q— « while
fixing @ =1. In this limit Eq. (2.2) becomes

HY®;K)=Q [ drh(2(r);K) . 2.3)
R

This continuum limit implies that we can only study phe-
nomena with a typical macroscopic length. Notice that
we have considered that the original spin Hamiltonian is
such that in the final continuum one does not depend on
QO corrections. This situation is not the rule and, in gen-
eral, Q° corrections will appear. However, the spirit of
the approach would not change with this inclusion and
for simplicity we will not consider them.

We assume now that the above spin system has a sto-
chastic spin flip dynamics; that is, a spin variable change
its sign in a random way according to some probability
function. A spin change will be reflected in a change of
the order +£2/Q in the fields ® in which it is contained.
Therefore, a field configuration ® will evolve towards its
equilibrium state characterized by the set of parameters
K, by means of a Markov process represented by a Mar-
kovian master equation (MME). In this paper we consid-
er that the probability at time ¢ that the system
configuration is ®, say PX(®;K ), follows the MME
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3, PN®K)= [ dr [ dnf(mlwN@" —D; KPR 5K ) —w @S5 K PADK)]

where ®"'={®(r')+7n/Q8,, r'€R?. The function
f(n) is the distribution of the possible field increments
and it is assumed to be symmetric, i.e., f(n)=f(—7),
and analytic around the origin, and w*(®—®’;K ) is the
probability per unit time that the system changes from
the state @ to the state ®'. In order to guarantee that the
system’s stationary state will be an equilibrium one given
by the Gibbsian weight P, (D;K ) = exp[ —HN®;K )], it

is sufficient to build the rates w® as

wHN P ;K)=DHNP;K)-HYD;K)) ,

D(AM)=e *D(—A)=20, D(0)=1. (2.5)

Therefore, Egs. (2.3)-(2.5) define a continuous dynamical
model which, for almost any initial field configuration,
will evolve to a given equilibrium state.

The above construction from the original lattice spin
system may seem worthless because we could have writ-
ten (2.3)-(2.5) as the model definition. But, as we will
show, the Q factor in front of the continuous Hamiltoni-
an in Eq. (2.3) is essential in maintaining some depen-
dence on the rate D at the mesoscopic level. Therefore,
we thought it was necessary to show where it came from
and its physical meaning.

From this equilibrium model it is easy to construct the
family of nonequilibrium models which are going to
study in this paper. This is done by linearly superposing
several of the above equilibrium rates with different K pa-
rameters [12]. In this form, the system is dynamically
frustrated in trying each rate to drive the system to
different equilibrium states and, a priori, the stationary
state is expected to be a non-Gibbsian one (i.e., there is no
effective Hamiltonian describing the stationary state).

]

3PN®)=[ dr [ dufm)
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(2.4)

The MME corresponding to this class of nonequilibrium
models is, similarly to Eq. (2.4), written as

3. PM®)= [ dr [ dnf(m){w@r—®)PH@™)

—wHP—-O")PYP)] ,
(2.6)
with

wi@—e)= [ dKpKw@—25K), @7

where p (K) is an a priori given distribution which is part
of the model definition. Equations (2.5)-(2.7) give us the
complete microscopic dynamical definition of our model.
It is not obvious at all how to get some insight about the
system’s macroscopic behavior from these equations. The
frontal undertaking of the MME is usually worthless and
therefore it is necessary to find a different point of view in
order to analyze this class of systems. The point of view
that we have used in this paper is the construction, from
the above MME, of a mesoscopic equation with some a
priori minimum required properties.

We see in Eq. (2.6) that there is a natural parameter
which reflects a coarse-grained origin of our continuous
model from a microscopic lattice spinlike model. As we
commented, this parameter should be large enough in or-
der to define correctly the continuous limit. Therefore,
we have a natural parameter to formally expand the
MME (2.6). The result of this expansion is the well-
known Kramers-Moyal expansion (see, for instance, Refs.
[10,15,16]), which in our case reads

(€D(=U,[@(r);K]- W[ K]

— DU, (22K 1+ W R, K 1IN JPHR)

v L |71
34|z

where
K)=n A (BK)
U REREI=n=50 ) 2.9)
5 1 gt STA@K)
wa K)= ! =
W REK= X I A sep)
(AN=[ 4K p(K)AK) and k)

=0 'HY®;K). Some useful information can be de-
rived from Eq. (2.8) from a perturbative scheme.
Let us assume that for large enough ) the probability

'siP2(@
8d(r)

)
(D(=U,[2r)K]-WF LKD) |, (2.8)
[
distribution can be written as

P ®)=NCexp(— VD)),
t ¢t €XP! t (2.10)

VA ®@)=0V,,(®)+V, (®)+0(Q™h),

where N'= [d® exp(—VA(@)). V2 is called in general
time-dependent nonequilibrium potential. We are going
to assume that this potential has an unique limit when
the time goes to infinity, i.e., lim, V&=V, which we
call stationary nonequilibrium potential or sometimes only
nonequilibrium potential [17].
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Notice the difference between a Hamiltonian as the one
written in (2.3) and a general nonequilibrium potential:
the first one is a particular class of nonequilibrium poten-
tial in which it is possible to distinguish a sort of local in-
teraction between the system elements. Moreover, the
(time-) nonequilibrium potential is expected to be con-
tinuous but not differentiable in some small regions in the

3,InN2—Q3,V, (®)—3,V, ,(®)+0(Q™!)
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phase space (see, for instance, Refs. [18—-20] and it can be
shown that it is a Lyapunov function for the underlying
deterministic dynamical system [21]. Anyway, we are go-
ing to work where the potential is assumed to be locally
differentiable, that is, nearby its local minima.

When we substitute Eq. (2.10) into Eq. (2.8) and keep
the leading orders in ) we get

= [ A [ dnfm | €D, [@rEDNe™ o™ —1)

——’LL{<<D(Un[g<;>;1_<])»(1+e

2Q 8P(r)

+ & LD, (2K D Ne™

From 2.11 we can extract some limiting results.

(i) The deterministic equation. When we introduce the
time variable 7=Q "'t and do the limit @ — o, the solu-
tion of Eq. (2.8) reads

P(2)=58(®—p,)
with
3p.(r)= [ dnf(m«DWU,[u, ;KDY . 2.13)

Equation (2.13) is usually called the deterministic equa-
tion. It is possible to show (see Appendix A) that the
solutions of Eq. (2.13) are extremals of the zeroth-order
nonequilibrium potential, i.e., SVO,,(Q)/&P(L)IQ:RT
=0. Let us remark here that this equation is clearly
dependent on the analytical form of the microscopic rate

(2.12)

a8V, , /5¢(;)])}
780(0)) 8V, )
——5¢’(L) +0(Q7°). (2.11)

[

D and this is so because there is a () factor in front of the
Hamiltonians (2.3) defining the rate (2.7). We may con-
clude that the coarse graining commented on in Sec. II is
essential in order to have a correct macroscopic descrip-
tion (as it is shown from computer experiments [13]) and,
for instance, it may deserve to be carefully studied in the
future.

(ii) The stationary state. To study the stationary state
we set the left-hand side of Eq. (2.11) equal to zero.
Then, order by order in Q, we set the right-hand side of
Eq. (2.11) equal to zero and get the set of closed
differential equations whose solutions are the coefficients,
Visw i=0,1,..., of the nonequilibrium potential. In
particular, the equations arising from the first two orders
are

J A [ dn fm D, [@erENNe™ o —1)=0, 2.14)
[ode [ an s | S22 (€D, [RERK DN+ on")
3 . 2V, g /60 OV 1 | _
2(D(U,[@(r);K]) Ne 30() (2.15)
[
In order to find the nonequilibrium potential, one (such as, for example, the one given by

could be tempted, for example, to assume that the
stationary distribution has the so-called detailed
balance property, that is, Egs. (2.14) and (2.15) hold with-
out the f g<4r term in front of them. But, even in the
case in which we were able to isolate the first derivatives
of Vi from the set of Egs. (2.14) and (2.15),
ie, 8V, /8®(r)=F;,[®(),VO(r),...,V"D(r),...],
i=0,1, ,..., it is only possible to integrate the latter
equations for some particular functional forms of F;

F;=g,[®(r)]+a;V’®(r), where g; and a; are an arbi-
trary function and a constant, respectively). In general,
this is not going to be the case and therefore, we cannot
usually obtain the nonequilibrium potential directly from
a detailed balance condition. Notice, however, that when
a unique microscopic mechanism is acting, i.e.,
p(K)=8(K—K,), the detailed balance property holds
because of our original rate construction [see Eq. (2.5)]
and then V(®)=HY®;K,).
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III. HOW TO BUILD AN APPROPRIATE FOKKER-PLANCK EQUATION
Let us write a general FPE

op)=-L 5
aPr®I=o [ Arsei

S 0)]+ G E )+ EAR) )0 | PA@). a1

5P(r)
We would like to fit the functionals =, =, and E, in such a way that at least Egs. (2.11)-(2.13) hold . That is, we expect
to reproduce the two first leading terms in Q of the true time nonequilibrium potential. Because our parameter {2 is go-
ing to be physically large, the latter will be a good approximation of the real system behavior.

In order to fit the = functionals, let us substitute Eq. (2.10) into (3.1) and expand the latter in leading orders on (.
The resulting equation reads

3,InN2—Qd,¥, (®)—3,V, (@)+0(Q~})

= Vo |z d(r) @ ALY
R4 - 8D(r) ZolR(r)] = 2(r 5P(r)
| SE@(r)]  _ SVi, §V,, 8%, 8V,
Q JrF sor) Rl S EIRWISE T Y 5er) sor)
8V, 8Vo, Vi

—2E,[®(r)]—— o). (3.2)

d®(r) 8P(r)

It would be a sufficient condition to reproduce an identical dynamical behavior of the time nonequilibrium potential in
its first two leading orders in Q, with the coefficients being, by direct comparison of Eq. (3.2) with Egs. (2.11)-(2.13),

Eew]=—J dnf(n)n((D(U [@(r;K]) N
Eexact = 2 > d D(U
FURW= | 5505 | o Jed1 MU, [REKDY
-1 -1
a8V, , /60(r)] 8V, &V,
3 + _2 —
*1e 2| 30(r) ] 50(r) K
-1
1| 8o,
- - d D(U_ [®(r);K
50(r) 5<1>(  edn s DU, (@R KD
~1 !
a6V, , /50(2)) &V, &V,
X — —2 =2 —pt, (33
e T S J 8o(r) | )
-2
8V, 76V,  /8D(r)] Vo,
=exact = > . 0,1 -1 — >
== 550 S dnf DU, [REKD)) |e =580
f
where Z§* is fixed by expecting the FPE (3.1) to repro- Theorem 1. Let H(®)=QH(®) be the interaction
duce the exact deterministic equation (2.13). As we see, Hamiltonian that characterizes the system equilibrium

the coefficients Z$**t and Z5™** given by (3.3) depend on  stationary state. Then the FPE (3.1) with coefficients
the explicit form of the unknown time nonequilibrium po- [@(r)]=E[D(r)]
tential functional first derivative. If we are only interest- oL=1= =0 t=2=0d0

[1]

ed in making sure that the exact nonequilibrium potential E,[®(r)]=0, (3.4)
is the stationary solution of the FPE (3.1), then it is —

enough to replace V;,, i =0,1, by V., i =0,1, in Eq. =[] = E5(2(r)]

(3.3). Then it is possible to construct a FPE such that its —2=s sH(®)

solution is the exact one up to certain order in perturba- SP(r)

tion theory? The unique answer seems to be yes, if we B

know a priori the exact solution. That is the case when  Where

dealing with systems at equilibrium where the stationary 8 (D)

solution is the Gibbsian one. In fact, from Egs. (3.3), it is ()] f dn f(n)nD
straightforward to show the following theorem.

T eBr) ] , (3.5)
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has the following properties: (i) It reproduces the exact
deterministic dynamics given by Eq. (2.12) with
87,

ﬂ—SUT(L) (3.6)

a,,v,(z)=fRd'qf(7])nD

(ii) and its stationary solution is the exact Gibbsian one
P, (®)xexp[ —H(P)].

Proof. (i) In the Q— o« limit, the FPE coefficient =,
defines completely the deterministic equation. Therefore,
we only need to show that the Z; coefficient of the FPE
(3.1), given by Egs. (3.4) and (3.5), coincides with the ex-
act one E§*°'. This is, by construction, the case. (ii) This
point is shown by direct substitution of the Gibbsian
weight into the stationary FPE (3.1) 3,P=0.

Notice how the rate analytical form D appears explicit-
ly in the FPE and it characterizes the system dynamical
properties. This theorem was already used by Hanggi
et al. [22,23] in order to study transient phenomena in
systems with one variable for which it is always possible
to find the exact stationary distribution.

When dealing with the competing dynamical system,
we do not know the nonequilibrium potential and then
we cannot find a priori any FPE which reproduces global-
ly that potential. Anyway, we have found that, without
knowing explicitly that solution, it is possible to construct
a FPE such that its stationary solution is almost exact
near the nonequilibrium potential extremals. Let us
demonstrate the later assertion by means of the next two
theorems.

Theorem 2. Let any FPE (3.1) be such that its
coefficients have the properties

ElR(r)]=EF*[@(r)], a9
Eo*e)]=4 [ dnf DU, "KD)’ '

where v* is any dynamically stable solution for the sta-
tionary deterministic equation (2.13), ie., d,u*(z)=0.
Then (i) it reproduces the exact deterministic dynamics
given by Egs. (2.12) and (2.13) and (ii) the ¥V, ; part of its
stationary solution almost coincides with the exact one in
a suitable neighborhood of p *.

Proof. (i) Same as (i) in Theorem 1. (ii) The component
Veat of the exact stationary nonequilibrium potential is
the solution of the Hamilton-Jacobi type of Eq. (2.14):

Hy (@)= [ dr [ dnf()KDU, (21K

X[e™D—1]=0, (3.8)

where (r )=8Vf,’,‘:,°t /8®(r). Similarly, from Eq. (3.2),
we see that the component V{5, of the stationary none-
quilibrium potential of a FPE (3.1) is given by

HEM (2, @)=~ [ dr /(D) E[ ()] - [ (0] (2)}

=0, 3.9

where 7'(r )=8V&§t /8®(r). Both nonequilibrium poten-
tials have the same minima because both of them produce
the same deterministic equation (see Appendix A).

Let us assume that these nonequilibrium potentials are
differentiable in a suitable small region around any of its
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local minima. This is a reasonable conjecture because it

has been shown that this potential is almost everywhere
differentiable (see, for instance, Refs. [21,24] and refer-
ences therein). Therefore, in such a region we can apply
the theorem in Appendix B, which relates a
Hamiltonian-Jacobi type of equation with a Hamiltonian
dynamical system. Notice that the latter theorem cannot
be applied directly to Eq. (3.8) or (3.9) because we cannot
guarantee the C* character of the potential in the full
configuration space.

To build the corresponding potentials locally around of
their minima, we should solve first the dynamical systems
characterized by the Hamiltonians H§®(z,®) and
H OFP(E,Q ), where 7 symbolizes now the conjugate mo-
ments of @, i.e.,

P ) T T T T sa(r)

The trajectories associated with these dynamical systems
have to cross the point M =(0,v*).

Finally, the potential at point @ is equal to the integral
of 7 along the trajectory connecting the point (my,®)
with M, where 7, is fixed by choosing the trajectory that
reaches M when ¢t — — o [18-20,25].

Therefore, we only need to show that the Hamiltonians
Hg*' and HET are almost equal in a neighborhood of a
common minimum in order to show that the two sets of
partial differential equations have an almost identical
solution around it. In our case, the local expansion of the
Hamiltonians (3.8) and (3.9) around the minimum (0, *)
is

Heoxact ( , g)

(3.10)

= dr dr'Y(r')m( )858‘“‘[1}'(1)]
T T Jgagpd O TR Sv*(r')
+1[ Arw(e? [ dn fn* € DU, [2*KIN

+0(e%),
(3.11)

8Z [v*(r)]
Bv*(r’)
+ [ A TSN 0]+ 0

Hi (z,®)=— fRdeR,,dL dr'Y(r")m(r)

where Y(r)=®(r)—v*(r), VrER% |Y(r)|~|m(r)| <,
VrERY% and the analyticity of the functionals Z is as-
sumed. We see that a sufficient condition for the match-
ing of Egs. (3.11) up to order & is that Egs. (3.7) hold.
Notice that it can be shown that the stationary points
of the Hamiltonian dynamics generated by Eqs. (3.10) are
hyperbolic. However, all trajectories meeting the above
boundary condition belong to the corresponding fixed
point stable manifold. Therefore, the €* corrections in
Egs. (3.11) (which are different in each case) remain small
under the evolution. The neighborhood of the fixed point
should be appropriately taken in order to guarantee that
the corrections to the nonequilibrium potential induced
by the € terms are smaller than, for instance, Vis Let
us assume that v =3 is the first leading correction to the
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common part of the Hamiltonian expansions (3.11). The
corresponding nonequilibrium potentials generated by
those Hamiltonians differ in O (Qe¥). We want the latter
diﬁ'erenzcje to be of order Q™ '. Therefore we should take
e~

Theorem 3. Let any FPE (3.1) be such that its
coefficients have the form

Eo[2(2)]=3{D_(2()—D (2(r))} ,

Z,[®(r)]=0, (3.12)
D_(2(r))—D (2(r))
HLR= ] D_(d)(r))] ’
D, (®(r))

where

D (2(r))=(D(U,[@(1EK]) . (3.13)
Then for

f)=1[8(n—1)+8(n+1)], (3.14)

(i) It reproduces the exact deterministic dynamics given
by Egs. (2.12) and (2.13) and (ii) the ¥V and V,  parts
of its stationary solution almost coincide with the exact
one in a suitable neighborhood of all spatially homogene-
ous deterministic solutions v *.

Proof. (i) Same as (i) in Theorem 1. (ii) The argument
goes through several well defined steps. (a) Let us define
the functional 7%[®(r)], which is the solution of the im-
plicit equation

J dnf D, [@(r; KN e™ ) —1]=0 .
(3.15)

For example, when f(7) is given by Eq. (3.14), it takes
the value 7°[®(r)]=In{D_(®(r))/D,(®(r))}, where
D, are given by Eq. (3.13). This functional has an in-
teresting property: its zeros are solutions of the deter-

J

H=g, @)= [ dr [ dnfl | 5o

[«D(U [@();KDN(1+e
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ministic equation. This property is easily shown.

Let v’ a zero of 7°, i.e., 7°%['(r)]=0. We expand Eq.
(3.15) around this zero and by keeping the leading order
on the perturbation expansion, we find that v’ is equal to
the zero of the right-hand side of the deterministic equa-
tion (2.13) and therefore it is a stationary solution of it.
In fact, from Eq. (2.14), it is straightforward to see that
all spatially homogeneous solutions of the deterministic
equation should be a zero of #°. Let us focus on those
spatially homogeneous solutions v * =y, .

(b) Let us choose now the FPE (3.1) coefficients

Eo[@(r)]=ZE5"2(2)],
[2(r)]=0,
AR =EF2 D(r)]/7%[D(r)] .

(3.16)

U]

It is matter of simple algebra to show that the coefficient
=, can be expanded around v,,,,, as

2, B(r)]=Z,[D(r)]+

(3.17)
where

Z,=1/n\[ . dn f(n"CD(U,[Vyom; K] .

Therefore, we can apply Theorem 2 in order to conclude
that the FPE defined by those coefficients almost repro-
duces ¥, in the neighborhood of vy, -

(c) In order to study ¥V, we should follow a similar
reasoning as in Theorem 2. Let us assume that the com-
ponents Vg and V(,}':';t are known. Similarly to Egs.
(3.8) and (3.9), the corresponding Hamiltonians whose dy-
namics will define the potentials V" and V¥, are, re-

spectively,

78V /aq><;)]) ]

V 5
) n[d o,st/ Q(L)]‘IT(L)}

—2(D(U,[@(r ;K1) e (3.18)
SE[@(r)] 8E, 8V, 82V o, 8Vo: _
FP = 0 - 2 LI P —Z[®(r) )
HF @)= [, L[ bo(r) 500 50l AL g T PRI gy TRl
(3.19)

In contrast with the above Hamiltonians (3.8) and (3.9),
now the fixed points for the corresponding Hamiltonian
dynamical equations (3.10) have, in general, nonzero mo-
menta N =(my.m,Vpom) and therefore we should check
first that both Hamiltonians lead to the same fixed point.
This is done by setting the corresponding equations (3.10)
equal to zero. It can be shown then that the sufficient

f
condition for both Hamiltonians to have the same fixed

point is that Z,;(v,,,)=0. This condition restricts us to
the f(7) given by Eq. (3.14).

Finally, it is simple algebra to expand the Hamiltoni-
ans H$®*“FP around the common fixed point and to
check that up to second order in the parameter expansion
both of them coincide and therefore they lead, locally, al-
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most to the same potential ¥V, . Obviously, all the com-
ments given in Theorem 2 apply here.

Corollary. The FPE defined in Theorem 3 is the same
as the one in Theorem 1 when p(K)=8(K —K,) and
fp=L[8(n—1D+8(n+1)].

Proof. By direct application of Theorem 1.

IV. CONCLUSION

Finally, let us stress some of the points we have worked
out in this paper. For a particularly type of model with
competing microscopic dynamics, we have built a
Fokker-Planck equation which guarantees a priori a
series of properties of the unknown exact stationary
nonequilibrium potential. In particular. (i) The FPE de-
pends explicitly on the microscopic rates, (ii) the dynam-
ics associated with the deterministic part of the equation
is exactly described, (iii) its stationary distribution is the
corresponding equilibrium Gibbsian one (independent on
the microscopic rate used) when a unique microscopic
mechanism acts, and (iv) in general, its stationary none-
quilibrium distribution is locally exact around the ex-
tremals of the true one. These properties could be very
valuable in order to extract reliable information from the
mesoscopic description. For example, at present we are
studying the influence of the microscopic dynamics in the
critical phenomenon associated with a phase transition.

APPENDIX A: RELATION
BETWEEN DETERMINISTIC EQUATION AND ¥, ,

From Eq. (2.10) we assumed that for large enough
the probability distribution for a given fixed time ¢ can be
written as

PH®)=NPexp[ —QV, ,(2)+0(Q%)], (A1)

where N2 is the normalization of the probability. Be-
cause V,, is bounded by below, it has at least one
minimum in its domain of definition. Expanding the time
nonequilibrium potential around one of the ¥, , minima,
we get

PY(®)=N{exp

_QfRd@RddL dar’' A, (r,r')Y,(£)Y(r')

+0(mr3,a°T)l , (A2)

where Y,(z)=®(z)—P,(r)* and ®} is one minimum of

Vo (@), ie., 8V, (2)/8®(r)l,_os=0. (Note: It is ex-
- t

pected that around its absolute minima the potential is
differentiable.) We see from (A2) that for all the
configurations such that limg_ ,Q'2|Y,(r)|= o,
Vr €RY, its probability to occur decays exponentially in
Q and therefore they are not going to influence the sys-
tem dynamical behavior when 1 — «. However, the rest
of configurations are important in such a limit. Let us
consider any configuration such that |Y,(r)|<Q~172
VrERY The dynamics of the probability is given by
solving Eq. (2.11) for the leading order in . In our case
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we know the analytical form of the probability by Eq.
(A2) and the only unknown is ®;. We can get a time
differential equation for ®} by substituting Eq. (A2) into
(2.11), rescaling time by r=0 "¢, and keeping the lead-
ing orders in Q; thus

fm@R Ardr’ 4,(r,r')3.9: )Y, (r')

= [ o o Ardr [ dnf(amCDU,[@2wxED)
X AL

T, (r)<Q~ 1%, VreER?. (A3

By comparing Egs. (2.13) and (A3), we get that @} =p,.
Therefore, for a given initial nonequilibrium potential
Vo> the time evolution of its absolute minimum @7,
721, is given by the solution of the deterministic equa-
tion (2.13) with @} as the initial datum, when Q— co.

APPENDIX B: SOLUTIONS TO A
HAMILTON-JACOBI EQUATION (REF. [26])

Let S,(v) be a defined functional and C® on an open
set of the configurational space UCG(v) and on a time
interval [0,2']. Let R,(®,v) be a real valued C * function
on an open set of the phase space VCF(®,v) and on a
time interval [0,¢']. R,(®,v) is such that there exists a
nonsingular and invertible map ¥ such that for each time
tE€[0,t'], it transforms the point (®,p)E V into the point
P(D,v)=(P",v), with @' (r)=86R(D,v)/8P(r). Let
S,(v) be a solution of a Hamilton-Jacobi type of equation

651(2)
s Y

3,S,(u)+R, =0. (B1)

Let us consider the differential equation
SR 8S,(v,)
t 82; ’y-t
68, (yv,)
dv,(r)

9,v,(r)= (B2)

with the initial condition p, = © t,€[0,¢']. Let us as-

sume that for all v'”€ U and t,E€[0,¢'], one can solve

the differential equation (B2) for ¢ near ¢,
Then, by setting

6S,(v,)

du,(r) ’

m (r)= (B3)
the functions v, and m, are solutions to the Hamilton
equations corresponding to the Hamiltonian R,(w,v),
verifying the initial date g,0=g(°’ and m, (r)
=8S,0( b, )/8v,0( r). Finally,

S,(n,)= f’;dT[ETa,g,—R,(z,.ﬂ,)] . (B4)
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